
 

 

 

 

 

 

 

 

Better, or Just Different?  

Examining Operational Efficiency on Commuter Rail and 

Hybrid Rail Systems in the US 

Sandy Johnston 

APLN 504 

12/11/2015 

 

 

 

 

 

 

 

 

 

 

 

  



Contents 

Introduction ..................................................................................................................................... 3 

Hypothesis and Research Question ................................................................................................. 5 

About the Data ................................................................................................................................ 6 

Descriptive Statistics ....................................................................................................................... 7 

Relationships Between Variables (t-tests) ...................................................................................... 9 

Correlations ..................................................................................................................................... 9 

Correlation Matrix (n for all=27) .................................................................................................. 10 

Linear Regression Modeling ......................................................................................................... 11 

Combined/Comparative Models ............................................................................................... 13 

Differential Models ................................................................................................................... 14 

YR .......................................................................................................................................... 14 

CR .......................................................................................................................................... 15 

Discussion ..................................................................................................................................... 16 

Conclusions and Further Research Needed .................................................................................. 21 

Appendix A: Systems Studied ...................................................................................................... 24 

Appendix B: Variables .................................................................................................................. 26 

Appendix C: Visual Presentations of Descriptive Data ................................................................ 27 

Appendix D: Analysis Dataset ...................................................................................................... 31 

Appendix E: SPSS Outputs ........................................................................................................... 32 

 

 

 

 

 

 

 

 



Introduction 
The last several decades have seen a remarkable resurgence in public transit in the United 

States. As traffic congestion increases and many metropolitan areas continue to sprawl, 

policymakers have increasingly looked to increase the number of mobility options available to 

their constituents. One of the most popular ways to do this has been to implement a regional, or 

commuter, rail system.  

Commuter rail is a uniquely American mode that evolved to cope with high peak-hour 

demand from low-density areas surrounding a major urban center. Commuter rail trains can 

cover long distances at high speeds, and are is relatively cheap to implement if using existing 

rights of way. However, 

commuter rail trains are 

expensive to operate because 

of staffing requirements and 

generally run infrequently at 

off-peak times as a result, 

leading to significant 

emphasis on peak service. 

The US has five major 

“legacy” commuter rail systems (systems of significant size that have been in continuous 

operation from the pre-World War II era to today), in New York City, Boston, Philadelphia, 

Washington, DC, and Chicago. While other systems (including those in Detroit, Pittsburgh, and 

Milwaukee) have come and gone over the years, since the 1980s a number of “new” commuter 

rail systems have opened in cities like Seattle, Los Angeles, Albuquerque, and Miami. Ridership 

Figure 1: Existing commuter rail systems in North America, from The Transport Politic 
(http://www.thetransportpolitic.com/existing-systems/existing-commuter-rail-systems)  

http://www.thetransportpolitic.com/existing-systems/existing-commuter-rail-systems


levels on these systems, however, remain uneven, leading some metro areas to seek other 

solutions.  

Recently, several cities have experimented with a form of transit known to the Federal 

Transit Administration as “hybrid rail.” The foundations for this kind of operation were laid with 

the release of Transit Cooperative Research Program (TCRP) report 52, “Joint Operation of 

Light Rail Transit or Diesel Multiple Unit Vehicles with Railroads,” in 1999. Often known 

popularly as “diesel light rail,” and first 

defined by the FTA in 20111 (although 

systems were in operation before then) 

“hybrid rail” is best understood as a cross 

between light rail and commuter rail. 

“Hybrid rail” systems generally run with 

self-propelled cars (like light rail), but 

propelled by diesel, rather than electric, 

motors (like most commuter rail). For a 

variety of technical and regulatory reasons, “hybrid rail” systems generally import European 

vehicles known as Diesel Multiple Units, or DMUs2. With streamlined staffing and lower fuel 

consumption, these systems can and do operate more frequently than commuter rail, though they 

generally serve a suburb-to-city routing and do not run as frequently as urban light rail. As a 

                                                           
1 Federal Register /Vol. 76, No. 103 / Friday, May 27, 2011 /Notices 
2 Several of the systems have used “FRA-compliant” American-made DMUs, but these have generally been 

unsuccessful in the market. 

Figure 2: Coaster commuter rail (left) and Sprinter hybrid rail (right) 
share a station, but not tracks, at Oceanside, CA.  Difference in size 
and design between the two modes is apparent. Source: 
http://www.trainweb.org/chris/13nps4.JPG  

http://www.trainweb.org/chris/13nps4.JPG


result, many transit advocates have hailed DMU-based “hybrid rail” as the wave of the future in 

American transit3. 

Hypothesis and Research Question 
At this point in time, “hybrid rail” systems have been in operation in the US for a period 

of time long enough to begin the process of examining their efficiency benefits. The earliest such 

line, New Jersey Transit’s River Line between Trenton and Camden, opened in 2004. It was 

followed by the North Country Transportation District (CA) Sprinter in 2008, Oregon’s Westside 

Express in 2009, Capital MetroRail in Austin, TX in 2010, and the A-Train in Denton County, 

TX in 2011. Three more California projects, SMART in Sonoma County, eBart in the East Bay, 

and the Redlands Line from San Bernardino to Redlands, will open using the mode in coming 

years. As “hybrid rail” proliferates, the time has come to examine to what extent its cost 

efficiency promises relative to commuter rail have been born out.  

This paper examines a snapshot of data from the National Transit Database (NTD) 

related to commuter and hybrid rail systems, with the goal of measuring relative efficiencies 

given a number of physical and operational factors. Given the expectations of advocates and the 

growing popularity of the mode, it seems reasonable to hypothesize that hybrid rail systems 

will be more efficient on an operational cost basis than commuter rail systems. This paper 

uses the statistical software SPSS to conduct several analyses on the dataset, including 

descriptive statistics, hypothesis testing, and creation of a correlation matrix. The paper also 

seeks to establish regression models that can be used not just to observe, but to predict, 

operational costs and efficiencies. One set of regression models will help stakeholders decide 

                                                           
3 See for example http://seattletransitblog.com/2014/01/03/the-cheaper-brighter-future-of-american-passenger-rail/ 

and http://capntransit.blogspot.com/2009/03/feds-relax-restrictions-for-light-rail.html  

http://seattletransitblog.com/2014/01/03/the-cheaper-brighter-future-of-american-passenger-rail/
http://capntransit.blogspot.com/2009/03/feds-relax-restrictions-for-light-rail.html


between commuter rail and hybrid rail systems based on expected dimensions of service, and the 

other will predict service costs and efficiencies based on mode.  

About the Data 
 This paper relies on data compiled from the National Transit Database. Established by 

Congress in 1974, NTD “collects annual transit performance and financial data, monthly 

ridership, and safety and security data.”4 The data is used to support benchmarking and research 

and calculate federal funding; all urban and rural transit agencies that receive Federal funding are 

required to report data to NTD. The data tables—currently up-to-date through 2013—are 

accessible online through the Federal Transit Administration5 or the American Public Transit 

Association6 and can be downloaded in Excel format. 

 NTD tables allow sorting and filtering by a number of variables, including mode 

(meaning, in transit parlance, roughly what kind of vehicle is being used). For the following 

analysis, results from several tables were filtered to present only the “CR” (commuter rail) and 

“YR” (hybrid rail) modes. The filtering returns 28 results, of which one, representing the 

Downeaster Amtrak service from Boston to Portland, ME, was manually excluded because it is 

an intercity, not a commuter, service (despite being classified as CR in NTD) and presented as an 

extreme outlier in data analysis. It is presumably included in NTD because it receives some FTA 

funding. Another semi-intercity Amtrak route, the Keystone Service between Philadelphia and 

Harrisburg, is also presented in the 2013 NTD data, but was retained because its stop spacing and 

frequency are more equivalent to a commuter rail route and fall within the norms of such 

                                                           
4 Background information on NTD from: 

http://www.apta.com/members/memberprogramsandservices/international/Documents/U.S.%20National%20Transit

%20Database.pdf  
5 www.ntdprogram.gov 
6 http://www.apta.com/resources/statistics/Pages/NTDDataTables.aspx 

http://www.apta.com/members/memberprogramsandservices/international/Documents/U.S.%20National%20Transit%20Database.pdf
http://www.apta.com/members/memberprogramsandservices/international/Documents/U.S.%20National%20Transit%20Database.pdf
http://www.ntdprogram.gov/
http://www.apta.com/resources/statistics/Pages/NTDDataTables.aspx


operations. Thus the full dataset of commuter rail and hybrid rail operations in the US contains 

27 operations, 22 classified as CR and 5 as YR; a full list may be found in Appendix A below.  

This paper uses a number of variables from NTD to define and analyze operational 

factors and efficiency. Some of these variables are taken directly from NTD tables, and others 

are secondarily computed from variables contained in NTD tables. Future versions of this work 

could expand the list of variables to include measurements and factors not included in NTD, 

especially crew requirements and density of the area along the route. A full list of variables may 

be found in Appendix B below. This paper will particularly stress three dependent variables that 

measure operational efficiency: operational expense per vehicle hour, operational expense per 

passenger mile, and operational expense per passenger trip (unlinked). The most important 

independent variables are stop spacing (the distance between stops on a given line) and trains per 

route mile, a crude proxy for frequency of service, which is not directly measured by NTD. 

Another variable, passenger trips per vehicle revenue hour, can occupy either a dependent or an 

independent role.  

Descriptive Statistics 
 This section provides an overview and numeric and visual presentations of the data 

covered in this paper. Not all variables present in Appendix B are presented here; some are 

filtered out based on irrelevance to the research question. Data is presented with a particular eye 

towards defining the differences between CR and YR systems.  Visual representations are 

available in Appendix C below. 

 

 



 Mean Median Variance SD Min Max Range IQR 

Variable: VOMS 

CR 277.05 64.0 171667.0 414.33 7.0 1230.0 1223.0 330.0 

YR 7.4 6.0 20.800 4.56 4 15 11 7.5 

Variable: Number of Trains 

CR 39.46 12.0 2410.74 49.1 2.0 143.0 141.0 61.75 

YR 5.4 4.0 13.80 3.72 3.0 12.0 9.0 4.50 

Variable: Stop Spacing 

CR 4.60 4.63 3.69 1.92 1.45 8.60 7.15 2.95 

YR 2.79 2.92 1.41 1.19 1.47 4.26 2.79 2.31 

Variable: Trains per Route Mile  

CR .0928 .0701 .004 .06429 .02 .26 .24 .09 

YR .1044 .0939 .002 .04081 .06 .17 .11 .06 

Variable: Passenger Trips Per Revenue Hour 

CR 46.06 43.66 217.1 14.73 17.0 87.34 70.34 14.33 

YR 58.80 58.92 508.447 22.55 22.90 82.68 59.78 37.10 

Variable: Operational Expense per Vehicle Hour 

CR 548.16 505.65 29978.69 173.143 326.30 1087.50 761.20 200.20 

YR 688.82 674.30 27225.76 165.0 465.60 868.60 403.0 313.0 

Variable: Operational Expense per Passenger Trip 

CR 14.66 12.95 45.796 6.77 6.20 30.8 24.6 5.32 

YR 14.72 15.90 30.72 5.45 7.40 22.20 14.80 9.75 

Variable: Operational Expense per Passenger Mile 

CR .541 .40 .065 .256 .30 1.30 1 .20 

YR 1.22 1.00 .272 .522 .8 2.0 1.2 .95 

 



Relationships Between Variables (t-tests) 

We have seen thus far that many, but not all, of the variables examined show apparently 

large differences between YR and CR systems. But are these differences statistically significant? 

We use paired-sample t-tests, grouped by the “type” variable, to determine. It should be kept in 

mind that the sample size is relatively small—22 CR systems and just 5 YR systems—so 

statistical significance at high levels of confidence will be hard to achieve.  

 

Variable Levene's Test t DF 

Sig. (2-

tailed) 

Stop Spacing 

Sig.=.226; equal 

variances assumed 
1.992 25 0.057 

Pax Trips/Revenue 

Hour 

Sig.=.434; equal 

variances assumed 
-1.583 25 0.126 

Trains/Route Mile 

Sig.=.162; equal 

variances assumed 
-0.381 25 0.706 

OpEx/Vehicle Hour 

Sig.=.972; equal 

variances assumed 
-1.652 25 0.111 

PaxTrips/Vehicle 

Hour 

Sig.=.434; Equal 

variances assumed 
-1.583 25 0.126 

OpEx/PaxTrip 

Sig.=.737; Equal 

variances assumed 
-0.2 25 0.984 

OpEx/PaxMile 

Sig.=.013; Equal 

variances NOT 

assumed 

-2.835 25 .042 

Correlations 
Constructing a correlation matrix allows us to immediately see statistically significant 

relationships between ratio variables. While the sample size is small and statistical significance 

could therefore be hard to tease out, this exercise is important for two reasons: 

a) It allows us to see relationships between dependent and independent variables, 

previewing the construction of linear regression models in the next section 

b) It establishes relationships or lack thereof between independent variables, warning 

about potential multicollinearity problems.  



It is important to recognize that this matrix represents correlations for all of the data points in the 

set, and is not sorted by type (YR vs. CR). Statistically significant correlations are marked in red.  

Correlation Matrix (n for all=27) 
 

  

OpEx 

per 

Vehicle 

Hour 

OpEx 

per 

Unlinked 

Pax Trip 

OpEx 

per 

Pax 

Mile 

Stop 

Spacing 

Trains Per 

Route 

Mile 

(proxy for 

frequency) PaxTripPerRevHr 

OpEx per 

Vehicle Hour 

Pearson 

Correlation 
1 .386* .421* .170 -.134 .353 

Sig. (2-

tailed) 
  .047 .029 .396 .505 .071 

OpEx per 

Unlinked Pax 

Trip 

Pearson 

Correlation 
.386* 1 .405* .553** -.442* -.611** 

Sig. (2-

tailed) 
.047   .036 .003 .021 .001 

OpEx per 

Pax Mile 

Pearson 

Correlation 
.421* .405* 1 -.094 -.095 -.060 

Sig. (2-

tailed) 
.029 .036   .643 .637 .765 

Stop Spacing Pearson 

Correlation 
.170 .553** -.094 1 -.705** -.477* 

Sig. (2-

tailed) 
.396 .003 .643   .000 .012 

Trains per 

Route Mile 

Pearson 

Correlation 
-.134 -.442* -.095 -.705** 1 .323 

Sig. (2-

tailed) 
.505 .021 .637 .000   .101 

PaxTrips per 

Revenue 

Hour 

Pearson 

Correlation 
.353 -.611** -.060 -.477* .323 1 

Sig. (2-

tailed) 
.071 .001 .765 .012 .101   

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Operational expense per vehicle hour:  

 Moderately positively correlated with operational expense per passenger trip 

 Moderately positively correlated with operational expense per passenger mile 

 

Operational expense per unlinked passenger trip: 



 Moderately positively correlated with operational expense per vehicle hour 

 Moderately positively correlated with operational expense per passenger mile 

 Moderately positively correlated with stop spacing (as distance between stops 

INCREASES, costs increase) 

 Moderately negatively correlated with frequency 

 Moderately to strongly negatively correlated with passenger trips per revenue 

hour 

 

Operational Expense per Passenger Mile: 

 Moderately positively correlated with operational expense per vehicle hour 

 Moderately positively correlated with operational expense per unlinked passenger 

trip 

 

Stop Spacing 

 

 Moderately positively correlated with operational expense per passenger trip 

 Strongly negatively correlated with frequency 

 Moderately negatively correlated with passenger trips per revenue hour 

 

Passenger Trips per Revenue Hour 

 Moderately to strongly negatively correlated with operational expense per 

revenue hour 

 Moderately negatively associated with stop spacing 

Linear Regression Modeling 
 

 With an idea of the relative efficiencies of the two modes from descriptive statistics, and 

having established between which variables statistically significant correlations exist, we now 

turn to predictive functions. Creating linear regression models that can predict our various 

dependent variables will allow future policymakers who wish to establish a commuter rail or 

DMU service to predict the operational efficiency (and therefore, costs) with some accuracy, 

given the several inputs.  



 There are two kinds of regression models in this section. The first includes regression 

models for each of the three primary dependent variables measuring operational efficiency, using 

up to four independent variables: stop spacing, frequency of service, passengers per revenue 

hour, and a dummy variable representing the binary choice between YR and CR service, where 

YR=1 and CR=0. These models allow direct prediction of the relative efficiencies of YR and CR 

service. A fourth model calculates the anomalous variable passengers per vehicle revenue hour, 

here treated as a dependent variable though it may be regarded as an input as well. Each model 

incorporates the full sample size of data from NTD, so n=27 in all cases. 

The second set of nesting models represents an attempt to create operational cost and 

efficiency tests for each of the two modes separately, using exclusively their own data. For each 

of the three dependent variables measuring operational efficiency, we have created one set of 

nested models based on YR data exclusively and one set of nested models based on CR data 

exclusively, all using the same independent variables. Although the sample sizes are very small 

(n=5 for YR and n=22 for CR), this is at least a beginning to work that will allow future decision 

makers to predict operational costs. Using nested models allows us to control for different 

variables and make observations about the relative importance of various independent variables. 

Ultimately the goal is the selection of the best model(s) for operational efficiency for both YR 

and CR; since the dependent variables are largely interchangeable in terms of predictive value, 

this can be any of them.  

 

 



Combined/Comparative Models7 

Dependent Variable: Operational Expense per Vehicle Hour 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. Model 4 sig. 

Stop Spacing 15.698 0.396 13.987 0.6 39.626 0.125 59.555 0.976 

Trains per Route Mile   -81.908 0.923 -36.388 0.961 383.871 0.027 

Passengers/Revenue 

Hour     5.975 0.011 5.327 0.6 

Dummy for Type       175.615 0.05 

Constant 507.346 0 522.787 0.008 119.582 0.584 -6.355 0.976 

R2 0.029  0.029  0.273  0.393  

 

Dependent Variable: Operational Expense per Unlinked Passenger Trip 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. Model 4 sig. 

Stop Spacing 
1.854 0.003 1.607 0.056 0.856 0.281 1.437 0.084 

Trains per Route Mile 
  -11.199 0.666 -12.525 0.592 -0.277 0.99 

Passengers/Revenue 

Hour 
    -0.174 0.016 -0.193 0.006 

Dummy for Type 
      5.118 0.006 

Constant 
6.772 0.15 8.885 0.121 20.66 0.005 16.99 0.018 

R2 
0.305  0.311  0.468  0.544  

 

Dependent Variable: Operational Expense per Passenger Mile 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. Model 4 sig. 

Stop Spacing 
-0.02 0.643 -0.068 0.264 -0.083 0.214 0.005 0.066 

Trains per Route Mile 
  -2.176 0.262 -2.202 0.263 -0.353 0.924 

Passengers/Revenue 

Hour 
    -0.003 0.541 -0.006 0.815 

Dummy for Type 
      0.773 0.147 

Constant 
0.751 0.001 1.162 0.009 1.396 0.02 0.841 0.066 

R2 
0.009  0.06  0.076  0.511  

 

                                                           
7 Full SPSS output for all tables is attached in Appendix XXX below 



Dependent Variable: Passengers/Revenue Hour 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing -4.139 0.012 -4.306 0.061 -3.481 0.173 

Trains per Route Mile   -7.602 0.915 7.842 0.916 

Dummy for Type     6.379 0.464 

Constant 66.047 0 67.482 0 61.319 0.002 

R2 0.228  0.228   0.246 

 

Differential Models 

YR 

Dependent Variable: Operational Expense per Vehicle Hour 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing 
-8.015 0.927 -31.015 0.806 282.484 0.306 

Trains per Route Mile 
  -1275.091 0.731 4883.675 0.367 

Passengers/Revenue 

Hour 
    15.667 0.256 

Constant 
711.197 0.059 908.511 0.731 -1530.83 0.393 

R2 
0.003  0.075  0.858  

 

 

Dependent Variable: Operational Expense per Passenger Mile 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing 
0.238 0.347 0.261 0.482 0.114 0.929 

Trains per Route Mile 
  1.312 0.896 -1.588 0.896 

Dependent Variable: Operational Expense per Passenger Trip 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing 
4.493 0.009 5.237 0.004 4.549 0.118 

Trains per Route Mile 
  41.256 0.052 27.741 0.374 

Passengers/Revenue 

Hour 
    -0.034 0.538 

Constant 
2.176 0.395 -4.208 0.138 1.145 0.886 

R2 
0.926  0.992  0.996  



Passengers/Revenue 

Hour 
    -0.007 0.899 

Constant 
0.556 0.447 0.353 0.844 1.502 0.875 

R2 
0.293  0.3  0.317  

 

 

Dependent Variable: Passenger Trips per Vehicle Hour 

Independent Variable Model 1 sig. Model 2 sig. 

Stop Spacing -12.919 0.207 -20.01 0.092 

Trains per Route 

Mile   -393.106 0.174 

Constant 94.869 0.029 155.7 0.044 

R2 0.462  0.829  

 

CR 

Dependent Variable: Operational Expense per Vehicle Hour 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing 
33.392 0.089 50.39 0.092 56.626 0.05 

Trains per Route Mile 
  681.071 0.432 360.294 0.665 

Passengers/Revenue 

Hour 
    4.745 0.083 

Constant 
394.805 0 253.507 0.219 36.082 0.873 

R2 
.137  .166  .298  

 

 

Dependent Variable: Operational Expense per Passenger Trip 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing 
1.984 0.006 1.745 0.097 1.455 0.116 

Trains per Route Mile 
  -9.58 0.752 5.319 0.845 

Passengers/Revenue 

Hour 
    -0.22 0.085 



Constant 
5.544 0.101 7.532 0.297 17.631 0.026 

R2 
0.317  0.321  0.507  

 

Dependent Variable: Operational Expense per Passenger Mile 

Independent Variable Model 1 sig. Model 2 sig. Model 3 sig. 

Stop Spacing 
0.022 0.456 0.002 0.97 -0.004 0.929 

Trains per Route Mile 
  -0.824 0.545 -0.526 0.705 

Passengers/Revenue 

Hour 
    -0.004 0.321 

Constant 
0.439 0.007 0.609 0.068 0.812 0.042 

R2 
0.028  0.047  0.099 0.028 

 

Dependent Variable: Passengers per Revenue Hour 

Independent Variable Model 1 sig. Model 2 sig. 

Stop Spacing -2.001 0.072 -1.314 0.586 

Trains per Route Mile   67.601 0.353 

Constant 59.845 0 45.821 0.013 

R2 0.153  0.192  

 

Discussion 
 This research has examined the comparative operational efficiencies of commuter rail 

and hybrid rail, using data from the National Transit Database. We hypothesized that, given the 

expectations of its backers and proponents, hybrid rail would, as a mode, be found to be more 

efficient in operation than commuter rail. This was analyzed using three primary dependent 

variables: operational expense per vehicle hour, operational expense per passenger trip, and 

operational expense per passenger mile. These variables were analyzed using two primary 

independent variables, stop spacing and trains per route mile, a proxy for frequency of service. 

Analysis was also conducted using the important ridership measure of ridership per vehicle 



revenue hour, which can serve either as an independent or a dependent variable, since ridership 

is both a result of good service and an input into the calculation of how much service is required.   

The results of this statistical examination are, on the whole, mixed. We expected that YR 

systems would show closer stop spacing than CR systems, to take advantage of the lightweight- 

and faster-accelerating (in theory) nature of their equipment. Indeed, YR stop spacing is 

considerably closer than that of commuter rail systems—logical, considering the proposed 

benefits of the mode. The difference between the two modes comes very, very close to achieving 

the 95% confidence threshold (p=.057). With a median of 2.79 miles, YR stop spacing does not, 

however, approach the generally considered best practice for urban rapid transit of stations 

located every half mile to 1 mile. Indeed, the longer end of YR stop spacing overlaps with CR 

stop spacing, again suggesting a convergence between the modes. The minimum stop spacing on 

a CR system, SEPTA’s 1.45 miles, actually is the single lowest result regardless of mode, and 

suggests that that entire system should be run as a rapid transit system rather than “commuter 

rail”—a longtime cause among transit advocates. It is worth remembering that, according to our 

hypothesis, stop spacing would be expected to show an inverse relationship with efficiency 

measures—that is, closer (smaller) stop spacing should make for lower costs.  

Perhaps the most important result is that YR systems decisively outperform CR systems 

on the cherished operating efficiency measure of passengers carried per vehicle hour; though the 

difference does not quite achieve significance at a high level of confidence (p=.126), that level of 

confidence is hard to achieve with such small sample sizes. The mean (58.80) is well higher than 

that of CR (46.06), and indeed aside from one lower outlier (DCTA), the entire distribution of 

YR systems lies above the CR mean. The single most heavily used system in the country, 

though, is #4, Caltrain on the San Francisco peninsula—a strong corridor anchored by San 



Francisco on one end and San Jose on the other, running through Silicon Valley in between. On 

the whole, though, YR systems clearly make better use of their equipment than do CR systems. 

This is not a surprise given that CR systems often run long trains at off-peak times with only one 

or two cars open since breaking up trainsets midday is difficult, while YR systems use self-

propelled cars that can be more easily mixed and matched to meet demand.  

NTD does not measure frequency of service directly (and indeed, that would be difficult 

to do on a system-wide basis for systems that have more than one line). As such, since frequency 

of service is an important determinant of efficiency of service and of passenger utility, this paper 

uses the number of trains in operation on an average weekday divided by the system’s overall 

route mileage as a crude proxy for frequency of service. The results are interesting: YR systems 

are actually, on the whole, more frequent than CR services. That is how it should be; the promise 

of YR is that is can offer more frequent service at lower cost. The single most frequent system, 

though, is point #16, New York and Connecticut’s Metro-North Railroad. As one of the two 

largest systems in the country, that is not a surprise. When measuring all 27 systems, frequency 

of service is moderately to strongly negatively correlated with operational expense per revenue 

hour and moderately negatively associated with stop spacing. In other words, systems with closer 

stop spacing generally have more frequent service, although it is hard to state the direction of 

causation. Frequency is also associated with lower operational expense on one measure—a 

potentially important result. However, regression shows that slopes related to the crude 

frequency proxy used here generally struggle to achieve statistical significance, so a more 

thorough analysis using actual schedule data to more accurately estimate frequency, though 

outside the scope of this project, would likely prove a strong next step.  



If passengers per vehicle revenue mile indicated that YR systems are more productive, 

the various dependent variables indicating operational expense show that the mode has not yet 

conquered the bug of massive operational expense that plagues American commuter rail. YR’s 

mean for operating expense per passenger mile mean is higher than that of CR systems, as is 

almost the entire distribution (though the highest single expense belongs to Minnesota’s 

Northstar commuter rail, a prime example of wasteful commuter rail spending). Based on 

averages and distributions, operational expense per passenger trip is virtually identical for CR 

and YR systems. Cost per passenger mile, too, is much higher—both in averages and in 

distribution—for YR than CR systems. In part, this is surely because YR lines are typically 

shorter than CR equivalents, which typically carry passengers for long distances. The cost 

efficiency measures—our dependent variables—suggest that, on the whole, YR systems have not 

accomplished the cost control they have potential to provide. 

Of the variables examined, difference in only one, operational expense per passenger 

mile, achieves full statistical significance at the .95 confidence level. One other, stop spacing, 

comes very close (sig.=.057), while several—passenger trips per revenue hour, operational 

expense per vehicle hour, and passenger trips per revenue hour—come close to achieving 

significance at the .90 confidence level.  This is a fascinating result as it seems to indicate that 

operational practices on YR systems are not very different from those on CR systems, perhaps 

accounting for some of the YR mode’s apparent operational inefficiencies.  

Analysis of descriptive statistics and hypothesis tests allow us to analyze currently 

existing differences between YR and CR systems; regression allows us to project those 

differences into the future. Since all of the dependent variables are highly correlated with each 

other, and largely interchangeable in planning for overall costs, we can afford to pick the 



strongest models of each type to represent overall costs. For the comparative models, those 

measuring directly the differences between YR and CR systems, this takes the form of Model 4 

analyzing Operational Expense per Unlinked passenger trips, all of whose slopes are highly 

significant by the standards of this exercise, and whose r2 is .544:  

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝑝𝑒𝑟 𝑈𝑛𝑙𝑖𝑛𝑘𝑒𝑑 𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑇𝑟𝑖𝑝

= 16.99 + (1.437 × 𝑆𝑡𝑜𝑝 𝑆𝑝𝑎𝑐𝑖𝑛𝑔) + (−0.277 × 𝑡𝑟𝑎𝑖𝑛𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑡𝑒 𝑚𝑖𝑙𝑒)

+ (−0.193 × 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠 𝑝𝑒𝑟 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 ℎ𝑜𝑢𝑟) + (5.118 × 𝑇𝑌𝑃𝐸) 

Where TYPE is a dummy variable representing mode type, with CR=0 and YR=1. In this 

function, operational expense has a positive relationship with stop spacing—meaning that as stop 

spacing gets wider, expenses will go up. Expense has a negative relationship with frequency, 

meaning that as frequency grows, expense goes down (although at a low rate), which would be 

somewhat surprising to operators, though not to advocates. And, of course, expense goes up as 

ridership goes down, which is to be expected, since expenses are largely fixed for a given level 

of operation. When the mean input variables from our data are plugged into this equation, YR 

expense per passenger trip comes to $14.74, and CR to $14.69—virtually identical to the means 

of the variable in NTD data. Regression thus again confirms that YR has, on this measure, not 

achieved the significant operational savings promised, despite higher productivity in terms of 

ridership.  

 This research also seeks to present regression models tied directly to the individual types, 

to allow policymakers who have already decided on their mode type to predict costs to some 

extent. Given the small sample sizes, the models struggle to achieve much significance. Of all 

the YR models presented, it seems that #2 of operational expense per passenger trip is the overall 

strongest. The model boasts an impressive r2 of .992 and looks like this: 



𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑥𝑝𝑒𝑛𝑠𝑒 𝑝𝑒𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑡𝑟𝑖𝑝

= −4.208 + (5.237 × 𝑠𝑡𝑜𝑝 𝑠𝑝𝑎𝑐𝑖𝑛𝑔) + (41.256 × 𝑇𝑟𝑎𝑖𝑛𝑠 𝑝𝑒𝑟 𝑅𝑜𝑢𝑡𝑒 𝑀𝑖𝑙𝑒) 

This conclusion suggests that policymakers must establish a sense of what ridership will be 

before seeking to measure future efficiency on a YR service. There is also significant room for 

additional research on the effect of frequency and span of service on efficiency, beyond the use 

of a crude proxy such as NTD is able to provide.  

For CR systems, it is clear that the most reliable relationship is between stop spacing and 

operational efficiency. Overall, the best model of those tested is likely model #1 of those 

measuring operational expense per passenger trip. The resulting equation would be: 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑥𝑝𝑒𝑛𝑠𝑒 𝑝𝑒𝑟 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑡𝑟𝑖𝑝 = (𝑠𝑡𝑜𝑝 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 × 1.984) 

Between r2 and its adjusted equivalent, we can surmise that stop spacing accounts for around 

30% of the variation in operational expense per passenger trip—a not insignificant amount. As 

with the YR systems, there is clearly much more work to be done here, particularly with regard 

to the effects of frequency on efficiency. Interestingly, the lack of reliable results with regard to 

operational cost per passenger mile suggests that the wide variability within CR systems on 

distance may make constructing cost-predictive functions difficult.  

Conclusions and Further Research Needed 
 This analysis has come to several primary, and important, but limited conclusions: 

 Hybrid rail systems can and do outperform their commuter rail counterparts on a 

ridership-per-vehicle-hour basis 

 Hybrid rail operational costs are equivalent to or higher than commuter rail costs 

 With all systems analyzed together, closer stop spacing generally correlates to more 

efficiency (reduced costs and higher ridership) 

 While the crudeness of the representation used may obscure the results, frequency of 

service may also correlate with more cost-efficient service  



Taken together, these conclusions point in the direction that technically-minded transit advocates 

have long advocated: commuter and regional rail systems in the US need significant labor reform 

to increase operating efficiency.8 Systems that break the 9-to-5, peak-focused, mold of typical 

US commuter rail can and do perform well on ridership metrics—but they have not yet solved 

the problem of high operational costs. DMU advocates often point to the mode as being 

lightweight, easy, and cheap to implement—and that can be true in terms of capital costs, 

although due to their rarity DMUs still often cost significantly more in the US than in Europe, 

where they are more common9. It seems, though, that hybrid rail systems have not yet broken 

through the cost barrier of reducing crewing requirements, the single largest piece of the transit 

expenditure puzzle.  

Trying to track labor efficiency, then, is probably the single largest piece of research that 

could supplement this analysis. NTD tracks a variable known as “Operating Expense per 

Employee Hour,” but agencies are not required to report it, and in 2013 data only five agencies 

did so. One potential avenue forward on this measure would be to cobble together data from 

multiple years of NTD reporting and try to compile a larger sample size. Alternatively, an 

ambitious researcher could try to compile the data from agencies’ own annual reports and other 

documentation.  

The second primary way forward, as has been stated multiple times, is to better quantify the 

concept of frequency of service. In times past this would have required manual examination of 

timetables and schedules, and still might; but the introduction of General Transit Feed 

Specification, or GTFS, tools might allow automated quantification of frequency. On larger 

                                                           
8 See, for example, Alon Levy’s recent post “Why Labor Efficiency is Important.” 

https://pedestrianobservations.wordpress.com/2015/07/26/why-labor-efficiency-is-important/  
9 See in particular https://systemicfailure.wordpress.com/2010/11/13/the-six-million-dollar-train/  

https://pedestrianobservations.wordpress.com/2015/07/26/why-labor-efficiency-is-important/
https://systemicfailure.wordpress.com/2010/11/13/the-six-million-dollar-train/


systems with more than one route, especially those with multiple service patterns on the same 

route (say, the Long Island Railroad, which has very frequent service on the inner half of its 

network and relatively infrequent service on the outer part), there would be numerous 

complicating factors, but an enterprising researcher could surely make something work. A better 

measure for frequency than this paper’s crude proxy would likely make the models much more 

robust.  

It may be ironic that this statistical analysis of operational efficiency ultimately comes down 

to, in large part, a qualitative rather than a quantitative measure. Yet it does seem that labor 

policy—in particular, the question of how many crew members must ride a particular train—is 

the single most important remaining question in the comparative analysis of hybrid rail vs. 

commuter rail systems. It is a question that remains unquantified because of NTD’s (lack of) 

reporting practices, and one that is highly politicized. Labor unions remain extremely strong in 

the railroad sector, and often provide crucial political support for transit projects. That makes any 

talk of reducing crew sizes extremely touchy. Ultimately, it seems that the question of efficiency 

remains not just a technical one, but a political one—perhaps even more political than technical. 

And research on that front will continue in this author’s senior paper.  

 

 

 

 

 

 

 

 



Appendix A: Systems Studied 
 

Service Metro Area Type Dataset ID 

Altamont Commuter Express San Jose-Stockton CR 1 

Sprinter San Diego YR 2 

Coaster San Diego CR 3 

Caltrain San Francisco-San Jose CR 4 

Metrolink Los Angeles CR 5 

Shore Line East Connecticut Shoreline CR 6 

Tri-Rail Miami CR 7 

Metra Chicago CR 8 

South Shore Chicago/Northwest Indiana CR 9 

MBTA Boston CR 10 

MARC Washington, DC/Baltimore CR 11 

Northstar Minneapolis/St. Paul CR 12 

River Line Philadelphia/Trenton YR 13 

New Jersey Transit NYC/Trenton CR 14 

RoadRunner Albuqurque/Santa Fe CR 15 

Metro-North NYC CR 16 

LIRR NYC CR 17 

Westside Express Portland, OR YR 18 

Keystone Service Philadelphia/Harrisburg CR 19 

SEPTA Philadelphia CR 20 



Music City Star Nashville CR 21 

Capital MetroRail Austin YR 22 

DART Dallas CR 23 

A-Train Dallas YR 24 

FrontRunner Salt Lake City CR 25 

Virginia Railway Express  Washington, DC CR 26 

Sounder Seattle CR 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B: Variables 

 
 

 
 

 

 

NTD 

Table 

Description Units Notes 

Independent Variables 

VOMS 19 Vehicles Operated in Maximum 

Service—most vehicles (coaches) 

operated at busiest point of the day 

  

VehMi 19 Annual Vehicle Miles Thousands  

RevMi 19 Annual Vehicle Revenue (in service, 

carrying passengers) Miles 

Thousands  

VeHr 19 Annual Vehicle Hours Thousands  

RevHr 19 Annual Vehicle Revenue Hours Thousands  

PaxTrips 19 Annual Unlinked Passenger Trips Thousands  

PaxMiles 19 Annual Passenger Miles Thousands  

NumTrains 20 Number of trains in operation 

(Average weekday) 

  

Stations 21 Total Number of Stations   

RouteMiles 23 Round Trip Route Miles  All lines in system 

StopSpace n/a Stations/(RouteMiles/2)  Average stop spacing for a one-

way trip (entire system) 

TrainsPerRouteMile n/a NumTrains/RouteMiles  Proxy for frequency 

Dependent Variables 

OpExVoms 27 Operating Expense per Vehicles 

Operated in Maximum Service 

Single 

dollars 

 

OpExVeHR 27 Operating Expense per Vehicle Hour   

OpExPaxTrip 27 Operating Expense per Passenger Trip   

OpExPaxMi 27 Operating Expense per Passenger Mile   

OpExEmHr 27 Operating Expense per Employee 

Hour 

 Only some agencies report 

PaxTripPerRevHR n/a Unlinked Passenger Trips Per Vehicle 

Revenue Hour 

 Considered one of the most 

reliable indicators of performance 

efficiency 



Appendix C: Visual Presentations of Descriptive Data 

 

 

 



 

 

 



 

 



 

 

 

  



Appendix D: Analysis Dataset  

Name Type VOMS VehMi RevMi VeHr RevHr PaxTrips PaxMiles 
NumTra
ins Stations 

RouteMil
es 

OpExVO
MS 

OpExVe
Hr 

OpExPax
Trip 

OpExPax
Mi 

OpExEm
Hr 

StopSpac
e 

TrainsPe
rRouteM
ile 

PaxTripP
erRevHr 

TypeDu
mmy 

Altamont Corridor Express(ACE) CR 22.00 944.10 914.70 28.70 23.30 940.80 42140.30 4.00 10.00 172.00 
678709.0

0 521.10 15.90 0.40 #NULL! 8.60 0.02 40.38 0.00 

North County Transit District(NCTD) YR 6.00 533.70 530.60 24.30 24.20 2000.90 18103.00 4.00 15.00 44.00 
2454214.

00 606.30 7.40 0.80 #NULL! 1.47 0.09 82.68 1.00 

North County Transit District(NCTD) CR 25.00 1470.70 1392.40 40.50 35.00 1629.20 44875.30 4.00 8.00 82.20 
750679.0

0 462.80 11.50 0.40 #NULL! 5.14 0.05 46.55 0.00 

Peninsula Corridor Joint Powers Board dba: 
Caltrain(PCJPB) CR 100.00 6845.00 6590.70 199.40 187.60 16384.60 357919.10 20.00 32.00 153.68 

1019919.
20 511.50 6.20 0.30 #NULL! 2.40 0.13 87.34 0.00 

Southern California Regional Rail Authority dba: 
Metrolink(M CR 185.00 13460.00 13162.90 374.20 338.00 13444.80 464643.10 37.00 55.00 777.80 

1023318.
70 505.90 14.10 0.40 #NULL! 7.07 0.05 39.78 0.00 

Connecticut Department of 
Transportation(CDOT) CR 28.00 2008.90 1467.60 41.50 30.30 871.50 20872.20 6.00 9.00 101.20 

957772.5
0 645.60 30.80 1.30 #NULL! 5.62 0.06 28.76 0.00 

South Florida Regional Transportation 
Authority(TRI-Rail) CR 40.00 3258.00 3164.50 115.70 102.50 4201.00 116122.40 10.00 18.00 142.24 

1451297.
30 501.80 13.80 0.50 #NULL! 3.95 0.07 40.99 0.00 

Northeast Illinois Regional Commuter Railroad 
Corporation db CR 1043.00 45217.40 43197.70 1458.60 1410.00 73603.20 

1665749.7
0 141.00 241.00 975.40 

636697.6
0 455.30 9.00 0.40 #NULL! 2.02 0.14 52.20 0.00 

Northern Indiana Commuter Transportation 
District(NICTD) CR 66.00 3835.90 3736.40 107.50 104.70 3606.90 104240.20 14.00 20.00 179.80 

598529.1
0 367.40 11.00 0.40 80.00 4.50 0.08 34.45 0.00 

Massachusetts Bay Transportation 
Authority(MBTA) CR 416.00 22530.50 22072.60 753.60 742.30 35228.80 729585.70 63.00 137.00 776.08 

844611.0
0 466.20 10.00 0.50 73.70 2.83 0.08 47.46 0.00 

Maryland Transit Administration(MTA) CR 175.00 6110.90 5687.40 156.80 147.10 9030.00 274231.00 28.00 42.00 400.40 
694907.1

0 775.80 13.50 0.40 #NULL! 4.77 0.07 61.39 0.00 

Metro Transit CR 23.00 543.30 536.90 16.30 15.10 787.20 19877.40 4.00 7.00 77.90 
771893.9

0 1087.50 22.60 0.90 #NULL! 5.56 0.05 52.13 0.00 

New Jersey Transit Corporation(NJ TRANSIT) YR 15.00 1253.30 1230.30 49.70 49.70 2859.20 41231.10 12.00 20.00 69.70 
2236150.

30 674.30 11.70 0.80 #NULL! 1.74 0.17 57.53 1.00 

New Jersey Transit Corporation(NJ TRANSIT) CR 1135.00 64130.40 60753.20 2193.40 1792.10 80136.40 
2224999.2

0 131.00 164.00 1001.80 
808051.3

0 418.10 11.40 0.40 94.40 3.05 0.13 44.72 0.00 

Rio Metro Regional Transit District(RMRTD) CR 25.00 1426.70 1398.30 38.10 36.10 1089.50 48413.10 7.00 13.00 193.10 
1083428.

20 711.50 24.90 0.60 #NULL! 7.43 0.04 30.18 0.00 

Metro-North Commuter Railroad Company, 
dba: MTA Metro-North CR 1230.00 73724.40 65213.20 2173.70 1955.20 83290.90 

2501154.2
0 143.00 112.00 545.74 

1205723.
50 509.30 12.30 0.60 #NULL! 2.44 0.26 42.60 0.00 

MTA Long Island Rail Road(MTA LIRR) CR 1011.00 74456.10 64819.90 2393.40 2113.10 99256.00 
2161002.9

0 113.00 124.00 638.20 
871251.6

0 493.00 12.90 0.40 98.40 2.57 0.18 46.97 0.00 

Tri-County Metropolitan Transportation District 
of Oregon(Tr YR 4.00 164.30 162.10 8.50 7.50 441.90 3552.60 3.00 5.00 29.22 

1759008.
30 829.30 15.90 2.00 106.20 2.92 0.10 58.92 1.00 

Pennsylvania Department of 
Transportation(PENNDOT) CR 20.00 2146.10 2146.10 35.90 35.90 610.20 44623.40 4.00 12.00 144.40 

936733.8
0 521.80 30.70 0.40 #NULL! 6.02 0.03 17.00 0.00 

Southeastern Pennsylvania Transportation 
Authority(SEPTA) CR 334.00 19990.20 18679.00 740.40 694.40 37167.70 502346.10 80.00 154.00 446.94 

738994.1
0 333.40 6.60 0.50 #NULL! 1.45 0.18 53.52 0.00 

Regional Transportation Authority(RTA) CR 7.00 205.30 200.00 8.30 6.70 252.20 3917.50 2.00 6.00 62.80 
597208.3

0 505.40 16.60 1.10 70.30 5.23 0.03 37.64 0.00 

Capital Metropolitan Transportation 
Authority(CMTA) YR 4.00 331.10 279.40 15.80 11.60 834.70 13281.90 4.00 9.00 64.24 

3428112.
30 868.60 16.40 1.00 #NULL! 3.57 0.06 71.96 1.00 

Dallas Area Rapid Transit(DART) CR 23.00 1351.60 1144.50 55.80 49.50 2092.80 40170.30 6.00 10.00 72.30 
1172514.

90 483.10 12.90 0.70 #NULL! 3.62 0.08 42.28 0.00 

Denton County Transportation Authority(DCTA) YR 8.00 624.60 598.10 24.30 22.30 510.70 7637.40 4.00 5.00 42.60 
1414881.

30 465.60 22.20 1.50 #NULL! 4.26 0.09 22.90 1.00 

Utah Transit Authority(UTA) CR 36.00 5126.10 5068.10 109.50 99.40 3816.40 108921.20 9.00 16.00 174.46 
992619.3

0 326.30 9.40 0.30 #NULL! 5.45 0.05 38.39 0.00 

Virginia Railway Express(VRE) CR 89.00 2427.60 2081.20 81.00 66.50 4550.10 149745.10 32.00 18.00 161.48 
682010.5

0 749.00 13.30 0.40 #NULL! 4.49 0.20 68.42 0.00 

Central Puget Sound Regional Transit 
Authority(ST) CR 62.00 1671.90 1636.80 54.50 49.30 2968.00 64702.00 10.00 12.00 163.84 

622467.8
0 707.70 13.00 0.60 78.00 6.83 0.06 60.20 0.00 



Appendix E: SPSS Outputs 
<see digital attachments> 


